Learning about a Categorical Latent Variable under Prior Near-Ignorance

نویسنده

  • Alberto Piatti
چکیده

It is well known that complete prior ignorance is not compatible with learning, at least in a coherent theory of (epistemic) uncertainty. What is less widely known, is that there is a state similar to full ignorance, that Walley calls near-ignorance, that permits learning to take place. In this paper we provide new and substantial evidence that also near-ignorance cannot be really regarded as a way out of the problem of starting statistical inference in conditions of very weak beliefs. The key to this result is focusing on a setting characterized by a variable of interest that is latent. We argue that such a setting is by far the most common case in practice, and we show, for the case of categorical latent variables (and general manifest variables) that there is a sufficient condition that, if satisfied, prevents learning to take place under prior near-ignorance. This condition is shown to be easily satisfied in the most common statistical problems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Limits of Learning about a Categorical Latent Variable under Prior Near-Ignorance

In this paper, we consider the coherent theory of (epistemic) uncertainty of Walley, in which beliefs are represented through sets of probability distributions, and we focus on the problem of modeling prior ignorance about a categorical random variable. In this setting, it is a known result that a state of prior ignorance is not compatible with learning. To overcome this problem, another state ...

متن کامل

Prior Near-Ignorance for Inferences in the k-parameter Exponential Family

This paper proposes a model of prior ignorance about a multivariate variable based on a set of distributions M . In particular, we discuss four minimal properties that a model of prior ignorance should satisfy: invariance, near-ignorance, learning and convergence. Near-ignorance and invariance ensure that our prior model behaves as a vacuous model with respect to some statistical inferences (e....

متن کامل

A discussion on learning and prior ignorance for sets of priors in the one-parameter exponential family

For a conjugate likelihood-prior model in the one-parameter exponential family of distributions, we show that, by letting the parameters of the conjugate exponential prior vary in suitable sets, it is possible to define a set of conjugate priors M that guarantees prior near-ignorance without producing vacuous inferences. This result is obtained following both a behavioural and a sensitivity ana...

متن کامل

A Stick-Breaking Likelihood for Categorical Data Analysis with Latent Gaussian Models

The development of accurate models and efficient algorithms for the analysis of multivariate categorical data are important and longstanding problems in machine learning and computational statistics. In this paper, we focus on modeling categorical data using Latent Gaussian Models (LGMs). We propose a novel logistic stick-breaking likelihood function for categorical LGMs that can exploit recent...

متن کامل

Multilevel Bayesian Models of Categorical Data Annotation

Abstract This paper demonstrates the utility of multilevel Bayesian models of data annotation for classifiers (also known as coding or rating). The observable data is the set of categorizations of items by annotators (also known as raters or coders) from which data may be missing at random or may be replicated (that is, it handles fixed panel and varying panel designs). Estimated model paramete...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007